This sheet may be used during tests and exams. The student is allowed to annotate the sheet.

$$PV = CF_t^* (1 + r)^{-t}; FV_t = CF_0^* (1 + r)^{t}$$

 $R_{\text{effective}} = [1 + (\text{stated interest rate /n})]^n - 1$

R continuous = e r - 1, r = stated annual interest rate.

PV of a normal annuity =
$$Ann* \left[\frac{1 - (1+r)^{-n}}{r} \right]$$

FV of a normal annuity =
$$Ann * \left[\frac{(1+r)^n - 1}{r} \right]$$

PV and FV for begin-of-period annuities, multiply the normal with (1 + r).

PV of growing annuity =
$$Ann*(1+g)*\left[\frac{(1-(1+g)^n}{(r-g)}\right]$$
 if $r > g$.

PV of perpetuity = A/r; PV of growing perpetuity = A/(r-g)

Chapter 3, Basics of risk.

Portfolio return: $r_p = W_a^* r_a + W_b^* r_b$

Portfolio variance: $\sigma_p^2 = W_a^2 * \sigma_a^2 + W_b^2 * \sigma_b^2 + 2 * W_a * W_b * \sigma_a * \sigma_b * \rho_{a,b}$

Minimum variance portfolio weight: $W_a^{min} = [\sigma_b^2 - cov_{a,b}]/[\sigma_a^2 + \sigma_b^2 - 2*cov_{a,b}]$ Where $cov_{a,b} = \sigma_a * \sigma_b * \rho_{a,b}$

Expected return on asset: $E(R_{asset}) = R_f + [E(R_m) - R_f] * \beta_{asset}$

Beta of an asset: $\beta_a = \sigma_a * \sigma_m * \rho_{am} / \sigma_m^2 = \text{Cov}_{am} / \sigma_m^2$

Riskfree Portfolio: $W_a = \sigma_b / \sigma_{a+\sigma_b}$

Chapter 4. Risk and hurdle rates in practice.

Risk premium : $E(R_m) - R_f$

Jensen's alpha: $a - R_f^*(1 - \beta)$

Stock period return: (price end - price begin + dividends) / price begin

Degree of operating leverage: % change in operating profit / % change in sales ⇒ FC↑⇒β↑

Debt/equity ratio: D/E

Levered β : $\beta_L = \beta_u * [1 + (1 - T) * D/E]$ if $\beta_D = 0$ and ers $(-B_d(D/E))$

Weighted Average Cost of Capital (WACC): $k_e * E / V + k_d * D / V + k_{ps} * PS / V$ where V = E + D + PS

ROC = EBIT(1-t)/ Average bookvalue of total investment

EVA = (ROC-WACC) * capital invested; EVA to Equity = (ROE-cost of equity) * equity invested

Profitability index = NPV / Initial Investment

IRR= rate at which NPV = 0; MIRR = cashflows are reinvested at hurdle rate = $\sqrt[n]{\frac{\text{FutureValue}}{\text{Investment}}}$ - 1

Chapter 7. Capital Structure

PV of tax savings from Debt = tax-rate*interest-rate*Debt/interest rate ofwel interest-rate * Debt

Value of Levered firm = Value unlevered + (Tax-rate * Debt)

After-tax cost of debt: k_d = interest rate * (1 - T)

Chapter 8. Capital Structure

 K_{ps} = preferred dividend / preferred stock price

Cost of Equity:

- 1 Estimate equity beta and debt/equity ratio
- 2 Estimate unlevered beta (β in case of no debt)
- 3 Reestimate levered betas for different levels of debt

4 Estimate costs of equity using levered beta

$$\begin{split} \beta_u &= \beta_{current} \, / \, [1 + (1 - t)D/E] \\ \beta_L &= \beta_u \, ^* \left[\, 1 + (\, 1 - T \,) \, ^* \, D/E \, \right] \\ K_e &= R_f + \beta_L \left[E(R_m) - R_f \right] \end{split}$$

$$Terminal \ Value = \frac{FCFF}{WACC - Rate_{growth}} = TV_n = \frac{CFFirm_n(1 + R_{gn})}{WACC_n - R_{gn}} = \Sigma [CF \ to \ firm_t \ / \ (1 + WACC)^t]$$

Value (Levered) = Value (Unlevered) + Value (TaxBenefit) - Value (BankruptsyCosts)

Interest Coverage Ratio = EBIT / Interest Expense

Actual Debt Ratio < Optimal Debt ratio ⇒ Underlevered ⇒ takeover target ⇒ increase leverage quickly Actual Debt Ratio < Optimal Debt ratio ⇒ Underlevered ⇒ no takeover target ⇒ Good projects ⇒ Debtî

Actual Debt Ratio < Optimal Debt ratio ⇒ Underlevered ⇒ no takeover target ⇒ Poor projects ⇒ Dividend or Buyback

Actual Debt Ratio > Optimal Debt ratio ⇒ Overlevered ⇒ Bankruptcy ⇒ Debt \(\preceq \) Assets \(\preceq \)

Actual Debt Ratio > Optimal Debt ratio ⇒ Overlevered ⇒ no Bankruptsy ⇒ Good projects ⇒ New Equity ↑ or Retained earnings

Actual Debt Ratio > Optimal Debt ratio \Rightarrow Overlevered \Rightarrow no Bankruptsy \Rightarrow Poor projects \Rightarrow Debt, dividend \Downarrow

Chapter 9 Capital structure financing details

EBITDA = EBIT + depreciation

Chapter 10 Dividend Policy

Dividend Yield = Dividends Per Share / Price Per Share \Rightarrow Growth \Uparrow Dyield \Downarrow

Expected return = Dividend Yield + price appreciation

Dividend Payout = Dividend / Earnings ; Retention Ratio (Reinvested) = (1 - Payout ratio)

FCFE (residu after all needs) = NetIncome + Depr -CapEx - \(\Delta \text{WorkingCapital} + \text{Debtnet} \)

Working Capital = Cash + invest + acc.receivable - acc. payable

FCFE payout = [Dividend + Repurchases] / FCFE

Spin off ⇒ new shares to existing stockholders

Split off ⇒ New shares in exchange of old shares from stockholders

FCFE < Dividends \Rightarrow ROC > WACC \Rightarrow cut dividends and re $\ddot{}$ nvest more

FCFE < Dividends ⇒ ROC > WACC ⇒ cut dicidends and analyse investment problem

 $\mathsf{FCFE} > \mathsf{Dividends} \Rightarrow \mathsf{ROC} > \mathsf{WACC} \Rightarrow \mathsf{let}$ management decide about cash and dividends

FCFE > Dividends ⇒ ROC < WACC ⇒ hold cash or return to stockholders

Chapter 12 Discounted Cash Flow

Cash Flow	Discount Rate	Value
Dividends	K _e	Equity
FCFE	K _e	Equity
FCFF	WACC	EBIT

 $FCFF = EBIT \ (1-t) \ (1-Re\"{i}nvestment rate) \ ; \ FCFF_n = (EBIT_{n-1})(1+R_g)(1-t) - (EBIT_{n-1})(1+R_g)(1-t)(Re\~{i}nv._{rate}) \ (1-t)(Re\~{i}nv._{rate}) \ (1-t)(Re\~{i}$

Growth = $Reinvestment_{rate} \times ROC$

ROE = ROC +D/E * [ROC-i *(1-t)]; DDM=Div.PS/(required rate of return-growth rate)

$$PriceEarningsRatio = \frac{Price}{EarningsPerShare} = \frac{PayoutRatio*(1+\textbf{g}_n)}{K_e - \textbf{g}_n} \Rightarrow Payout \ Ratio = (1-t)*EPS$$

$$PriceBookvalueRatio = \frac{Price}{BookvaluePerShare} = \frac{\textbf{ROE} * PayoutRatio * (1 + g_n)}{(K_e - g_n)} = 1 \text{ in een competitive market} \Rightarrow ROE = (1 - t)*[BVE-ROE]$$

$$PriceSalesRatio = \frac{Price}{Re \ venuPerShare} = \frac{\textbf{ProfitMargin} \ ^* \ PayoutRatio \ ^* \ (1 + g_n)}{Ke \ - g_n} \Rightarrow PM = (1 - t)^* [NetMargin^* RevPS]$$

Price Earnings Ratio	Price Bookvalue Ratio	Category
High	High	Rising Star
Low	High	Falling Star
High	Low	Restructuring
Low	Low	Dog

EVA : more profit without capital; optimize capital structure; use less capital; invest capital in high return projects

